Larrondo LOIU (VIZCAYA) España P.O. Box 1 323/48080 Bilbao Tel. 34-(4) 4 71 13 00 Fax 34-(4) 4 53 16 36

OLARRA U.K. LTD.

ACEROS INOXIDABLES

Anhang I Bsatz 4.3 Certificate/Zertifikat Nr. 348/2008/MUC

Works Inspector Stamp - Werkssachverständiger Sello del Inspector

Trade Mark - Zeichen des Lieferwerkes Anagrama del suministrador

1	FOREST PARK - CLEOBURY MORTIMER
-	NR KIDDERMINSTER-DY 149BD-ENGLAND
-	

				h				
Certificate type - APZ Nach EN	10204/3.1		Certificate nº - Pri Certificado nº	if-Nr 142249	1	Date-Datum-Fecha 14 - 02 - 2013		
Our order N° Werks - Nr 497240 N°de Referencia	Heat Schmelze Colada	341651	Your order N° Bestell - Nr Pedido N°	OL 5263				
Steel Grade Werkstoff 316-S-11 AV Calidad			Ents	rding to prechend BS esponde	970:PART	3:1991.		
Shape and Size - Gegens Perfil y dimensión HEXAGON 15,88 m	To	ice - Toleranz blerancia /DIN 176	Bundles Bunde Buitos	Bars Stäbe Barras	Weight Gewitcht Peso	2516 Kg		

Requirements - Anforderungen - Exigencias

EN 10.088-3.2005.

EN 10,272-2007.

ASTM A 182 / A 182M-12b.

ASTM A 479 / A 479M-12.

ASTM A 276-10.

ASME SA 479 / SA 479M-11a.

SAE AMS 5653F-02.

NACE MR-0175-2003/ISO 15156-3 2009.

316S31AV-1,4404-1,4401-TP.316L-TP.316.

PED 97/23/EC, Annex I, Parag.4.3/DGR 97/23/EG

Melting process / Erschmelzungsart / Proceso de Fusión

Heat treatment / Wärmebehandlung / Tratamiento térmico 1060C 4H/Std WATER/WASSER/AGUA

E.A.F. / A.O.D.

Solution annealed/Abgeschreckt/Hipertemple-Cold drawn/Gezogen/Estirado-

Dimension of Specimen Rp0.2% Rp 1% Rm A										A Z Hardness			Impact test / Kersbschlag / Resiliencia		
Dimension of Specimen Abmessungendes Probestabes Medida de las probetas		Rp0,2 N/mm MPA	12 N	mm2 MPA	Rm N/mm2 MPA	A %L 5D) %L 40	2 %	Härte HBw	ISO V Jules					
RD. 10,00 mm. Min. Max. Temperature C Spec. N°. 1 Probe Nr. Pro N°.		315		425	600	15									
			1			3 111 11 11 11 11 11 11 11 11 11 11 11 1			To the second						
		Probe Nr.		580		359	696	38		67	207				
1		Si	N	n l	P	5	3	Cr	Мо	Ni	Cu	N	Со	A large state of the state of t	
Min.							11	5,50	2,00	11,00		EE 2007 707 EE 2007 707 107 107 107 107 107 107 107 107		d de Tillianou	
Max.	0,030	1,00	2.	00	0.045	0,0	30 18	3,50	2,50	14,00	0,70			gent of the second	
	0,029	0,41	1,	73	0,033	0,0	28 17	7,05	2,08	11,00	0,37	0,0210	0,13	no. d	
Besic	htingung	ensionalins und Ausme y dimension	essung		Radioa	ktivitāts	spection kontrolle pactividad	0.K. 🗵	Antimixing Spektrosk Vo Antimezcla	erwechslu	ngspr O.K.	Grain Size Korngröss Tamaño d	e		

Remarks - Bemerkungen - Observaciones

IC test acc./IK prüfung nach ASTM A 262 E.02. OK Crack control/Rissgeprüft acc. EN 10277-1 class 2. OK **FLOW TECHNOLOGY LTD TEST CERTIFICATE VERIFIED TRUE COPY OF ORIGINAL**

F11489

9/16" JIC Swivel Female x 1/4" NPT RT Male Adaptor 10K

EDV / EDP Acc. EN 10.204 Alfredo Molina Certification Mng.

Works Inspector Der Werkssachverständige Inspector de făbrica